172 research outputs found

    Strategies in Absorbing Materials Productivity (H<sub>2</sub>O) of Renewable Energy Utilization by a Solar Still to Enhancement of Water Flowing over Glass Cover with the Influence of PCM and Nanoparticles

    Get PDF
    The solar thermal applications existing to investigative relationships of absorbing materials of water flowing over glass cover through the influence of PCM and nanoparticles for the enhancement of a single-slope single-basin solar still are presented and discussed. The results are compared with and without PCM and nanoparticles summer days for a conventional solar still. Numerically designed and experimental annotations have been written for the investigative solutions for the temperature of flowing water, glass cover, absorbing materials (FWCW and FWJW) and PCM and nanoparticles basin liner, respectively. The 24 h distillate manufacture rate of the solar still has been enhanced to usage of drip button through pure saline water to absorptive influence of FWCW capability is 70.02% and during (24 hours) daily distillate harvest of FWCW is 9.429 kg/m2 day, water flowing glass cover influence is 13.37%, respectively. A solar still analysis of Fourier coefficients with (6 to −6) harmonics Fourier series has been used for enhancement, and it is found to be a good representation of the observed variation. It is a good treaty among theoretical and experimental annotations of the structure

    Hand movement analysis of the elderly when using a remote control

    Get PDF
    The aim of the this project is to study the ability of older subjects to perform basic remote control manipulations and also to specify the minimal functional requirements to perform this activity of daily living

    NOSS-SCAT wind direction alias removal

    Get PDF
    The use of automated algorithms for removing aliases in NOSS-SCAT data is reported. The algorithms used for alias removal consist of histogram analysis, local averaging and curve fitting. The histogram analysis is used to determine the degree of homogeneity of the wind field defined by the largest probability alias vector at each grid point. The alias directions are compared with the preferred direction at each grid location and one of the multiple aliases is chosen as the true direction

    Information extraction and transmission techniques for spaceborne synthetic aperture radar images

    Get PDF
    Information extraction and transmission techniques for synthetic aperture radar (SAR) imagery were investigated. Four interrelated problems were addressed. An optimal tonal SAR image classification algorithm was developed and evaluated. A data compression technique was developed for SAR imagery which is simple and provides a 5:1 compression with acceptable image quality. An optimal textural edge detector was developed. Several SAR image enhancement algorithms have been proposed. The effectiveness of each algorithm was compared quantitatively

    Performance of Chemical Vapor Deposited ZnO thin film as thermal interface material on optical properties of LED

    Get PDF
    Chemical Vapor Deposition (CVD) was used for the synthesis of ZnO thin film on Al substrates at various flow rates of O2 gas. ZnO thin film coated substrates were tested as thermal substrates on influencing the optical properties of high power LED at various operating currents. Spectrometer analysis showed that ZnO thin film prepared at 10 sccm O2 flow rate showed better performance by reducing the Color Correlated Temperature (CCT) at driving currents. CCT values were maintained with respect to driving currents by ZnO thin film interface at all driving currents than air interface (bare Al substrate). On luminous flux analysis, 5 sccm samples showed good performance on increasing the light of the give LED at all driving currents than bare Al boundary condition. The observed results were evidenced with help of particle size distribution analysis on all film surface using Nanoscope software. Overall, ZnO thin film deposited at low O2 flow rate would be an alternative to solid thin film interface material in electronic packaging applications

    Performance of Newtonian filters in detecting gravitational waves from coalescing binaries

    Get PDF
    Coalescing binary systems are one of the most promising sources of gravitational waves. The technique of matched filtering used in the detection of gravitational waves from coalescing binaries relies on the construction of accurate templates. Until recently filters modelled on the quadrupole or the Newtonian approximation were deemed sufficient. Recently it was shown that post-Newtonian effects contribute to a secular growth in the phase difference between the actual signal and its corresponding Newtonian template. In this paper we investigate the possibility of compensating for the phase difference caused by the post-Newtonian terms by allowing for a shift in the Newtonian filter parameters. We find that Newtonian filters perform adequately for the purpose of detecting the presence of the signal for both the initial and the advanced LIGO detectors.Comment: Revtex 9 pages + 6 figures ( Can be obtained by "anonymous" ftp from 144.16.31.1 in dir /pub/rbs. Submitted to Physical Review D. IUCAA 1

    Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber

    Get PDF
    Present research expresses an experimental investigation on nanoparticle use to enhance Solar still (SS) yield. Manganese Oxide (MNO2) is selected as a nanoparticle material and used in SS. The nanomaterial is added with the black chrome paint of the SS walls to increase the yield. The weight concentrations (WC) of MNO2 have been used from 20% to 50 to see its effect on SS yield. It has been observed that the heat transfer and water temperature enhanced by the use of the MNO2 nanoparticle with black chrome paint. The use of the MNO2 nanoparticle has improved the yield of the SS. It has also observed that the yield of SS enhanced by 19.5% compared with alone SS by use of WC of 20-50%. The SS with MNO2nanoparticle's payback time is 82 days at 20% WC than the alone SS of 98 days.This work was carried by the NPRP grant # NPRP11S-1221-170116 from the Qatar National Research Fund (a member of Qatar Foundation ). The statements made herein are solely the responsibility of the authors.Scopu

    Performance enhancement of stepped basin solar still based on OSELM with traversal tree for higher energy adaptive control

    Get PDF
    A basin solar still precision design is regularly not reachable. To solve this issue, the basin area is coated with a nanolayer which allows to stimulate and control the multifaceted of the fast evaporations of physiognomies. The use of adaptive neural network-based approaches leads to better design cause permits detecting the conjunction, gigantic period feed, lower performances parameters which can be detrimental to system production. Further, an online Sequential Extreme Learning Machine (OSELM) system can be used to obtain the latest solar still based on adaptive control. Here, the solar still has been created at physical scale activity for haste of energy absorption. The performance of solar still is defined by the uniform occurrence with time series of dynamics transfer from basin liner to saline water. The feasibility scheme to authenticate was studied by applying calculation to the extensive heat transfer process. The furious SiO2/TiO2 nanoparticles used for the stepped basin solar still (SBSS) efficiency shows an increase of performances by 37.69% and 49.21%, respectively using 20% and 30% of SiO2/TiO2 coating. It is comparable higher when equated against an SBSS coating either SiO2 or TiO2, and/or no nanoparticles coatings. The binary search tree enabled to find the optimal cost for the solar still investigated and obtaining a superior design with higher performances

    Improvement of thermal performance of a solar box type cooker using SiO2/TiO2 nanolayer

    Get PDF
    An experimental analysis of a stepped solar box cooker (SSBC) improved using energetic SiO2/TiO2 nanoparticles. They were used in different ratios between 5% to 25% as a coating on a bar plate to enhance thermal performance. The SSBC was assessed experimentally to obtain a cost-effective solution and the best performance for the bar plate temperature, enabling increased cooking activities performance. The furious SiO2/TiO2 nanoparticles were coated over a bar plate, which allows them to absorb more solar radiation and increase the system of inner moist air temperature. The SiO2/TiO2 nanolayers used as 15% improved overall thermal efficiency by 31.42% of the system. The bar plate performances coated with SiO2/TiO2 nanolayers and used in SSBC were compared to other doping nanoparticles percentage for their solar thermal characteristics. The SiO2/TiO2 nanolayers coated by the SSBC is enabled to increase the performance by about 31.77%, 37.69%, 49.21%, 36.99%, and 34.66% when was used 5%, 10%, 15%, 20%, and 25%, respectively and compared to that of single nanolayers (SiO2, TiO2) of convention cooker

    Revealing an OSELM based on traversal tree for higher energy adaptive control using an efficient solar box cooker

    Get PDF
    The solar cooker represents a challenging scientific design. Its non-regular rechargeable system and the restriction imposed by the required availability quantity are the main issues. The use of a bar plate coated with nanolayer materials helps to stimulate and control the multifaceted performances for the cooker vessels. Further, it was noted that the traditional human methods are not capable to stimulate an efficient design for thermal applications, because the environment cannot adapt to the variable source. To overcome these challenges, we have used the approaches of adaptive neural network-based controls which further consider other parameters as the smaller family, measured conjunction, enormous period of feeding and below performances. Therefore, a novel solar cooker based on adaptive control through an online Sequential Extreme Learning Machine (OSELM) is presented and discussed. The use of OSELM enables also to detect an off-line physical activity process. The proposed solar cooker includes a bar plate coated with nanolayer materials (SiO2/TiO2 nanoparticles) which is responsible for physical accelerated activity of energy absorption. The feasibility scheme to validate this study is based on the calculation of extensive heat transfer process. By using the furious SiO2/TiO2 nanoparticles for the Stepped solar bar plate cooker (SSBC) the efficiency was increased by 37.69% and 49.21% using 10% and 15% volume fractions of nanoparticles
    corecore